Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Am J Gastroenterol ; 119(1): 107-115, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37011138

ABSTRACT

INTRODUCTION: This study is to evaluate the safety and pharmacokinetics (PK) of larsucosterol (DUR-928 or 25HC3S) in subjects with alcohol-associated hepatitis (AH), a devastating acute illness without US Food and Drug Administration-approved therapies. METHODS: This phase 2a, multicenter, open-label, dose escalation study evaluated the safety, PK, and efficacy signals of larsucosterol in 19 clinically diagnosed subjects with AH. Based on the model for end-stage liver disease (MELD) score, 7 subjects were considered to have moderate AH and 12 to have severe AH. All subjects received 1 or 2 intravenous infusions (72 hours apart) of larsucosterol at a dose of 30, 90, or 150 mg and were followed up for 28 days. Efficacy signals from a subgroup of subjects with severe AH were compared with those from 2 matched arms of those with severe AH treated with standard of care (SOC), including corticosteroids, from a contemporaneous study. RESULTS: All 19 larsucosterol-treated subjects survived the 28-day study. Fourteen (74%) of all subjects including 8 (67%) of the subjects with severe AH were discharged ≤72 hours after receiving a single infusion. There were no drug-related serious adverse events nor early terminations due to the treatment. PK profiles were not affected by disease severity. Biochemical parameters improved in most subjects. Serum bilirubin levels declined notably from baseline to day 7 and day 28, and MELD scores were reduced at day 28. The efficacy signals compared favorably with those from 2 matched groups treated with SOC. Lille scores at day 7 were <0.45 in 16 of the 18 (89%) subjects with day 7 samples. Lille scores from 8 subjects with severe AH who received 30 or 90 mg larsucosterol (doses used in phase 2b trial) were statistically significantly lower ( P < 0.01) than those from subjects with severe AH treated with SOC from the contemporaneous study. DISCUSSION: Larsucosterol was well tolerated at all 3 doses in subjects with AH without safety concerns. Data from this pilot study showed promising efficacy signals in subjects with AH. Larsucosterol is being evaluated in a phase 2b multicenter, randomized, double-blinded, placebo-controlled (AHFIRM) trial.


Subject(s)
End Stage Liver Disease , Hepatitis, Alcoholic , Humans , Pilot Projects , Severity of Illness Index , Hepatitis, Alcoholic/drug therapy , Hepatitis, Alcoholic/diagnosis
2.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37649909

ABSTRACT

One limitation on the ability to monitor health in older adults using Magnetic Resonance (MR) imaging is the presence of implants, where the prevalence of implantable devices (orthopedic, cardiac, neuromodulation) increases in the population, as does the pervasiveness of conditions requiring MRI studies for diagnosis (musculoskeletal diseases, infections, or cancer). The present study describes a novel multiphysics implant modeling testbed using the following approaches with two examples: - an in-silico human model based on the widely available Visible Human Project (VHP) cryo-section dataset; - a finite element method (FEM) modeling software workbench from Ansys (Electronics Desktop/Mechanical) to model MR radio frequency (RF) coils and the temperature rise modeling in heterogeneous media. The in-silico VHP Female model (250 parts with an additional 40 components specifically characterizing embedded implants and resultant surrounding tissues) corresponds to a 60-year-old female with a body mass index (BMI) of 36. The testbed includes the FEM-compatible in-silico human model, an implant embedding procedure, a generic parameterizable MRI RF birdcage two-port coil model, a workflow for computing heat sources on the implant surface and in adjacent tissues, and a thermal FEM solver directly linked to the MR coil simulator to determine implant heating based on an MR imaging study protocol. The primary target is MR labeling of large orthopaedic implants. The testbed has very recently been approved by the US Food and Drug Administration (FDA) as a medical device development tool (MDDT) for 1.5 T orthopaedic implant examinations.

3.
Med Sci (Basel) ; 10(4)2022 09 22.
Article in English | MEDLINE | ID: mdl-36278523

ABSTRACT

BACKGROUND: Guidelines for the management of polycystic ovary syndrome (PCOS) focus on lifestyle changes, incorporating exercise. Whilst evidence suggests that aerobic exercise may be beneficial, less is known about the effectiveness of resistance training (RT), which may be more feasible for those that have low fitness levels and/or are unable to tolerate/participate in aerobic exercise. OBJECTIVES: To identify the available evidence on RT in women with PCOS and to summarise findings in the context of a scoping review. ELIGIBILITY CRITERIA: Studies utilising pre-post designs to assess the effectiveness of RT in PCOS; all outcomes were included. SOURCES OF EVIDENCE: Four databases (PubMed, CENTRAL, CINAHL and SportDiscus) were searched and supplemented by hand searching of relevant papers/reference lists. CHARTING METHODS: Extracted data were presented in tables and qualitatively synthesised. RESULTS: Searches returned 42 papers; of those, 12 papers were included, relating to six studies/trials. Statistical changes were reported for multiple pertinent outcomes relating to metabolic (i.e., glycaemia and fat-free mass) and hormonal (i.e., testosterone and sex hormone-binding globulin) profiles. CONCLUSIONS: There is a striking lack of studies in this field and, despite the reported statistical significance for many outcomes, the documented magnitude of changes are small and the quality of the evidence questionable. This highlights an unmet need for rigorously designed/reported and sufficiently powered trials.


Subject(s)
Polycystic Ovary Syndrome , Resistance Training , Humans , Female , Polycystic Ovary Syndrome/therapy , Sex Hormone-Binding Globulin , Life Style , Testosterone
4.
Nat Rev Endocrinol ; 18(6): 325-326, 2022 06.
Article in English | MEDLINE | ID: mdl-35314798
5.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613673

ABSTRACT

Adipose tissue is a dynamic endocrine organ, secreting a plethora of adipokines which play a key role in regulating metabolic homeostasis and other physiological processes. An altered adipokine secretion profile from adipose tissue depots has been associated with obesity and related cardio-metabolic diseases. Asprosin is a recently described adipokine that is released in response to fasting and can elicit orexigenic and glucogenic effects. Circulating asprosin levels are elevated in a number of cardio-metabolic diseases, including obesity and type 2 diabetes. In vitro studies have reported pro-inflammatory effects of asprosin in a variety of tissues. The present study aimed to further elucidate the role of asprosin in inflammation by exploring its potential effect(s) in THP-1 macrophages. THP-1 monocytes were differentiated to macrophages by 48 h treatment with dihydroxyvitamin D3. Macrophages were treated with 100 nM recombinant human asprosin, 100 ng/mL lipopolysaccharide (LPS), and 10 µM caffeic acid phenethyl ester (CAPE; an inhibitor of NFκB activation) or 1 µM TAK-242 (a Toll-like receptor 4, TLR4, inhibitor). The expression and secretion of pertinent pro-inflammatory mediators were measured by qPCR, Western blot, ELISA and Bioplex. Asprosin stimulation significantly upregulated the expression and secretion of the pro-inflammatory cytokines: tumour necrosis factor α (TNFα), interleukin-1ß (IL-1ß), IL-8 and IL-12 in vitro. This pro-inflammatory response in THP-1 macrophages was partly attenuated by the treatments with CAPE and was significantly inhibited by TAK-242 treatment. Asprosin-induced inflammation is significantly counteracted by TLR4 inhibition in THP-1 macrophages, suggesting that asprosin exerts its pro-inflammatory effects, at least in part, via the TLR4 signalling pathway.


Subject(s)
Adipokines , Diabetes Mellitus, Type 2 , Macrophages , Toll-Like Receptor 4 , Humans , Adipokines/pharmacology , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Toll-Like Receptor 4/metabolism , THP-1 Cells
6.
Int J Biochem Cell Biol ; 143: 106135, 2022 02.
Article in English | MEDLINE | ID: mdl-34896612

ABSTRACT

Epidemiological studies show that higher circulating levels of odd chain saturated fatty acids (FA: C15:0 and C17:0) are associated with lower risk of metabolic disease. These odd chain saturated fatty acids (OCSFA) are produced by α-oxidation in peroxisomes, de novo lipogenesis, from the diet and by gut microbiota. Although present at low concentrations, they are of interest as potential targets to reduce metabolic disease risk. To determine whether OCSFA are affected by obesogenic diets, we have investigated whether high dietary fat intake affects the frequency of OCSFA-producing gut microbiota, liver lipid metabolism genes and circulating OCSFA. FA concentrations were determined in liver and serum from pathogen-free SPF C57BL/6 J mice fed either standard chow or a high fat diet (HFD; 60% calories as fat) for four and twelve weeks. Post-mortem mouse livers were analysed histologically for fat deposition by gas chromatography-mass spectrometry for FA composition and by qPCR for the lipid metabolic genes fatty acid desaturase 2 (FADS2), stearoyl CoA desaturase 1 (SCD1), elongation of long-chain fatty acids family member 6 (ELOVL6) and 2-hydroxyacyl-CoA lyase 1 (HACL). Gut microbiota in faecal pellets from the ileum were analysed by 16S RNA sequencing. A significant depletion of serum and liver C15:0 (>50%; P < 0.05) and liver C17:0 (>35%; P < 0.05) was observed in HFD-fed SPF mice in parallel with hepatic fat accumulation after four weeks. In addition, liver gene expression (HACL1, ELOVL6, SCD1 and FADS2) was lower (>50%; P < 0.05) and the relative abundance of beneficial C3:0-producing gut bacteria such as Akkermansia, Lactobacillus, Bifidobacterium was lower after HFD in SPF mice. In summary, high dietary fat intake reduces serum and liver OCSFA, OCSFA-producing gut microbiota and is associated with impaired liver lipid metabolism. Further studies are required to identify whether there is any beneficial effect of OCSFA and C3:0-producing gut bacteria to counter metabolic disease.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Animals , Male , Mice
7.
Front Glob Womens Health ; 2: 649104, 2021.
Article in English | MEDLINE | ID: mdl-34816205

ABSTRACT

Background: Lockdown measures have been enforced globally in response to the COVID-19 pandemic. Given the comorbidity burden in women with polycystic ovary syndrome (PCOS), these lockdown measures may have a particularly negative impact on sleep health, quality of life (QoL), and depression/stress levels in this population. The aim of this study was to explore whether such potential problems were present in women with PCOS during the COVID-19 lockdown in the UK. Methods: UK women with PCOS were recruited through social media into a cross-sectional study during the COVID-19 lockdown. The study survey was delivered online, and included demographic and COVID-19 relevant questions, as well as validated questionnaires/scales, namely the Insomnia Severity Index (ISI), Depression Anxiety and Stress Scale (DASS-21), and PCOSQOL questionnaire. Results: Three hundred and thirty-three women with PCOS [median age: 30.0 (9.0) years] were recruited. Participants were dichotomized based on responses regarding the impact of COVID-19 restrictions on their sleep [negative (N = 242) vs. no/positive (N = 91) impact]. No differences were noted between groups regarding age, time since PCOS diagnosis, body mass index, or number of comorbidities. Based on the ISI, 44.2% of participants reporting a negative impact on sleep exhibited at least moderately severe clinical insomnia. Compared to those who reported no/positive effect on sleep, the participants reporting a negative impact on sleep also reported poorer QoL, based on the total PCOSQOL score, with a greater impact of PCOS and poorer mood in the corresponding PCOSQOL domains. Based on the DASS-21, the latter also had statistically higher depression and stress levels compared to the former. Finally, for this cohort significant inverse correlations were noted between the ISI and PCOSQOL scores (total and domain scores), whilst the DASS-21 and ISI scores were positively correlated (all p-values <0.001). Conclusion: The majority of recruited UK women with PCOS reported that the COVID-19 lockdown had a negative impact on their sleep, which was also associated with impaired QoL and higher depression/stress levels. Whilst further research is required, women with PCOS should be considered a vulnerable population that may experience an adverse impact on sleep, QoL and mental health well-being due to lockdown measures during the COVID-19 pandemic.

8.
Nat Rev Endocrinol ; 17(9): 534-548, 2021 09.
Article in English | MEDLINE | ID: mdl-34172940

ABSTRACT

The past 50 years have seen a growing ageing population with an increasing prevalence of type 2 diabetes mellitus (T2DM); now, nearly half of all individuals with diabetes mellitus are older adults (aged ≥65 years). Older adults with T2DM present particularly difficult challenges. For example, the accentuated heterogeneity of these patients, the potential presence of multiple comorbidities, the increased susceptibility to hypoglycaemia, the increased dependence on care and the effect of frailty all add to the complexity of managing diabetes mellitus in this age group. In this Review, we offer an update on the key pathophysiological mechanisms associated with T2DM in older people. We then evaluate new evidence relating particularly to the effects of frailty and sarcopenia, the clinical difficulties of age-associated comorbidities, and the implications for existing guidelines and therapeutic options. Our conclusions will focus on the effect of T2DM on an ageing society.


Subject(s)
Aging/physiology , Diabetes Mellitus, Type 2/therapy , Age Factors , Aged , Aged, 80 and over , Comorbidity , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Frailty/complications , Frailty/epidemiology , Frailty/therapy , Humans , Prevalence , Sarcopenia/complications , Sarcopenia/epidemiology , Sarcopenia/therapy
9.
Cytokine Growth Factor Rev ; 60: 120-132, 2021 08.
Article in English | MEDLINE | ID: mdl-34108103

ABSTRACT

White adipose tissue is a dynamic endocrine organ that releases an array of adipokines, which play a key role in regulating metabolic homeostasis and multiple other physiological processes. An altered adipokine secretion profile from adipose tissue depots frequently characterizes obesity and related cardio-metabolic diseases. Asprosin is a recently discovered adipokine that is released in response to fasting. Following secretion, asprosin acts - via an olfactory G-protein coupled receptor and potentially via other unknown receptor(s) - on hepatocytes and agouti-related peptide-expressing neurons in the central nervous system to stimulate glucose secretion and promote appetite, respectively. A growing body of both in vitro and in vivo studies have shown asprosin to exert a number of effects on different metabolic tissues. Indeed, asprosin can attenuate insulin signalling and promote insulin resistance in skeletal muscle by increasing inflammation and endoplasmic reticulum stress. Interestingly, asprosin may also play a protective role in cardiomyocytes that are exposed to hypoxic conditions. Moreover, clinical studies have reported elevated circulating asprosin levels in obesity, type 2 diabetes and other obesity-related cardio-metabolic diseases, with significant associations to clinically relevant parameters. Understanding the spectrum of the effects of this novel adipokine is essential in order to determine its physiologic role and its significance as a potential therapeutic target and/or a biomarker of cardio-metabolic disease. The present review offers a comprehensive overview of the published literature on asprosin, including both clinical and preclinical studies, focusing on its role in metabolism and cardio-metabolic disease.


Subject(s)
Cardiovascular Diseases/etiology , Metabolic Diseases , Obesity , Adipokines , Fasting , Fibrillin-1 , Humans , Metabolic Diseases/etiology , Microfilament Proteins , Obesity/complications , Peptide Fragments , Peptide Hormones
10.
J Lipid Res ; 62: 100063, 2021.
Article in English | MEDLINE | ID: mdl-33705741

ABSTRACT

The oxysterol sulfate, 25-hydroxycholesterol 3-sulfate (25HC3S), has been shown to play an important role in lipid metabolism, inflammatory response, and cell survival. However, the mechanism(s) of its function in global regulation is unknown. The current study investigates the molecular mechanism by which 25HC3S functions as an endogenous epigenetic regulator. To study the effects of oxysterols/sterol sulfates on epigenetic modulators, 12 recombinant epigenetic enzymes were used to determine whether 25HC3S acts as their endogenous ligand. The enzyme kinetic study demonstrated that 25HC3S specifically inhibited DNA methyltransferases (DNMTs), DNMT1, DNMT3a, and DNMT3b with IC50 of 4.04, 3.03, and 9.05 × 10-6 M, respectively. In human hepatocytes, high glucose induces lipid accumulation by increasing promoter CpG methylation of key genes involved in development of nonalcoholic fatty liver diseases. Using this model, whole genome bisulfate sequencing analysis demonstrated that 25HC3S converts the 5mCpG to CpG in the promoter regions of 1,074 genes. In addition, we observed increased expression of the demethylated genes, which are involved in the master signaling pathways, including MAPK-ERK, calcium-AMP-activated protein kinase, and type II diabetes mellitus pathways. mRNA array analysis showed that the upregulated genes encoded for key elements of cell survival; conversely, downregulated genes encoded for key enzymes that decrease lipid biosynthesis. Taken together, our results indicate that the expression of these key elements and enzymes are regulated by the demethylated signaling pathways. We summarized that 25HC3S DNA demethylation of 5mCpG in promoter regions is a potent regulatory mechanism.


Subject(s)
Cholesterol Esters , Hydroxycholesterols
11.
Fuel (Lond) ; 2642020 Mar 15.
Article in English | MEDLINE | ID: mdl-33364633

ABSTRACT

Emissions generated from the combustion of coal have been a subject of regulation by the United States Environmental Protection Agency (U.S. EPA) and State agencies for years, as they have been associated with adverse effects on human health and the environment. Over the past several decades, regulations on these facility emissions have become more stringent and have therefore caused industry to look toward new pre- and post-combustion control technologies. In more recent years, there has been a "push" toward renewable and cleaner burning alternative fuels as replacements for traditional fossil fuels. Part of this "push" has been accomplished by States and Regions offering incentives and options for renewable portfolios, which over half of the states now have in some form. The current study investigates the potential changes in both gaseous and particulate emissions from the use of a variety of woody biomass materials as a drop-in replacement for coal as compared to use of 100% bituminous coal. Four different biomass materials are blended individually with coal at 20% and 40% by mass for testing on the U.S. EPA's Multi-Pollutant Control Research Facility, a pilot-scale coal-fired facility located in Research Triangle Park, North Carolina. Emissions are calculated based on measurements from the flue gas to characterize gaseous species (CO, CO2, NOX, SO2, other acid gases, and several organic hazardous air pollutants) as well as fine and ultrafine particulate (mass, size distribution, number count, elemental carbon, organic carbon, and black carbon) and compared among each combination of fuels and 100% bituminous coal.

12.
Cells ; 9(11)2020 11 16.
Article in English | MEDLINE | ID: mdl-33207733

ABSTRACT

MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.


Subject(s)
Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , MicroRNAs/metabolism , Animals , Cell Differentiation/physiology , Humans , Obesity/metabolism
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1469-1472, 2020 07.
Article in English | MEDLINE | ID: mdl-33018268

ABSTRACT

We present methods to harvest wireless power directly from the MRI RF field. The system includes a harvester coil to capture RF energy and an RF-DC converter for rectification. Energy harvesting by the harvester coil is modeled as a function of the MRI B1 RF field. Rectification is modeled using power-dependent large signal S-parameter simulation. A novel reference impedance-based modeling approach is leveraged to cascade models for linear inductive coupling and nonlinear diode rectification, and validated. The method permits independent optimization of harvester coils and RF-DC converters to maximize harvesting efficiency. Feasibility of this technique is demonstrated by implementing concurrent in-bore wireless power harvesting and MRI scanning on a clinical system. The effect of artifacts on image quality is also investigated.Clinical Relevance- In-bore wireless harvesting can provide power for medical accessories during MRI, with minimal system modification and cost.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Electric Impedance
14.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081264

ABSTRACT

ABCC1 and ABCC4 utilize energy from ATP hydrolysis to transport many different molecules, including drugs, out of the cell and, as such, have been implicated in causing drug resistance. However recently, because of their ability to transport signaling molecules and inflammatory mediators, it has been proposed that ABCC1 and ABCC4 may play a role in the hallmarks of cancer development and progression, independent of their drug efflux capabilities. Breast cancer is the most common cancer affecting women. In this study, the aim was to investigate whether ABCC1 or ABCC4 play a role in the proliferation or migration of breast cancer cell lines MCF-7 (luminal-type, receptor-positive) and MDA-MB-231 (basal-type, triple-negative). The effects of small molecule inhibitors or siRNA-mediated knockdown of ABCC1 or ABCCC4 were measured. Colony formation assays were used to assess the clonogenic capacity, MTT assays to measure the proliferation, and scratch assays and Transwell assays to monitor the cellular migration. The results showed a role for ABCC1 in cellular proliferation, whilst ABCC4 appeared to be more important for cellular migration. ELISA studies implicated cAMP and/or sphingosine-1-phosphate efflux in the mechanism by which these transporters mediate their effects. However, this needs to be investigated further, as it is key to understand the mechanisms before they can be considered as targets for treatment.


Subject(s)
Multidrug Resistance-Associated Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Cyclic AMP/metabolism , Humans , Lysophospholipids/metabolism , MCF-7 Cells , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Receptor, ErbB-2/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Triple Negative Breast Neoplasms/genetics
15.
Infect Prev Pract ; 2(2): 100060, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34368704

ABSTRACT

Antimicrobial resistance (AMR) is a global healthcare problem and therefore raising awareness within young learners is imperative. An AMR roadshow was designed to take key stage 4 students' learning 'out of the classroom', assess pre-existing knowledge of AMR and determine the impact of the roadshow on knowledge retention. Knowledge and subsequent retention were measured pre- and post-event through a standardised questionnaire. The roadshow significantly improved knowledge and understanding of AMR, which was retained for a minimum of twelve weeks. Engaging and interactive strategies addressing key health issues provide a positive learning experience which contributes to retained knowledge in young learners.

16.
Future Healthc J ; 6(2): 114-117, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31363517

ABSTRACT

Approximately 15% of elderly patients are readmitted within 28 days of discharge. This costs the NHS and patients. Previous studies show telephone contact with patients -post-discharge can reduce readmission rates. This service -evaluation used a cohort design and compared 30-day emergency readmission rate in patients identified to receive a community nurse follow-up with patients where no attempt was made. 756 patients across seven hospital wards were -identified; 303 were identified for the intervention and 453 in a -comparison group. Hospital admission and readmission data was extracted over 6 months. Where an attempt to contact a patient was made post-discharge, the readmission rate was 9.24% compared to 15.67% where no attempt to -contact was made (p=0.011). After adjustment for -confounding using logistic regression, there was evidence of reduced readmissions in the 'attempt to contact' group odds ratio = 1.93 (95% c-onfidence interval = 1.06-3.52, p=0.033). Of the patients who community nurses attempted to contact, 288 were contacted, and 202 received a home visit with general practitioner -referral and medications advice being the most common -interventions initiated. This service evaluation shows that a simple intervention where community nurses attempt to contact and visit geriatric patients after discharge causes a significant reduction in 30-day hospital readmissions.

17.
Syst Rev ; 8(1): 51, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755271

ABSTRACT

BACKGROUND: Typically, management of PCOS focuses on lifestyle changes (exercise and diet), aiming to alleviate symptoms, and lower the associated risk of type 2 diabetes and cardiovascular disease. Our objective was to analyse evidence on the effectiveness of exercise in the management of PCOS, when compared to (i) usual care, (ii) diet alone, and (iii) exercise combined with diet, and also exercise combined with diet, compared to (i) control or usual care and (ii) diet alone. METHODS: Relevant databases were searched (June 2017) with no time limit for trial inclusion. Eligible trials employed a randomised or quasi-randomised design to measure the chronic effects of exercise, or exercise and diet in women with PCOS. RESULTS: Searches returned 2390 articles; of those, 27 papers from 18 trials were included. Results are presented as mean difference (MD) and 95% confidence intervals (95% CI). Compared with control, exercise had a statistical effect on change from baseline fasting insulin (MD - 2.44 µIU/mL, 95% CIs - 4.24 to - 0.64; very low-quality evidence), HOMA-IR (- 0.57, - 0.99 to - 0.14; very low-quality evidence), total cholesterol (- 5.88 mg/dL, - 9.92 to - 1.83; low-quality evidence), LDL cholesterol (- 7.39 mg/dL, - 9.83 to - 4.95; low-quality evidence), and triglycerides (- 4.78 mg/dL, - 7.52 to - 2.05; low-quality evidence). Exercise also improved VO2 max (3.84 ml/kg/min, 2.87 to 4.81), waist circumference (- 2.62 cm, - 4.13 to - 1.11), and body fat percentage (- 1.39%, - 2.61 to - 0.18) when compared with usual care. No effect was found for change value systolic/diastolic blood pressure, fasting glucose, HDL cholesterol (all low-quality evidence), or waist-to-hip ratio. Many favourable change score findings were supported by post-intervention value analyses: fasting insulin (- 2.11 µIU/mL, - 3.49 to - 0.73), total cholesterol (- 6.66 mg/dL, - 11.14 to - 2.17), LDL cholesterol (- 6.91 mg/dL, - 12.02 to - 1.80), and VO2 max (5.01 ml/kg/min, 3.48 to 6.54). Statistically lower BMI (- 1.02 kg/m2, - 1.81 to - 0.23) and resting heart rate (- 3.26 beats/min - 4.93 to - 1.59) were also revealed in post-intervention analysis. Subgroup analyses revealed the greatest improvements in overweight/obese participants, and more outcomes improved when interventions were supervised, aerobic in nature, or of a shorter duration. Based on limited data, we found no differences for any outcome between the effects of exercise and diet combined, and diet alone. It was not possible to compare exercise vs diet or exercise and diet combined vs diet. CONCLUSION: Statistically beneficial effects of exercise were found for a range of metabolic, anthropometric, and cardiorespiratory fitness-related outcomes. However, caution should be adopted when interpreting these findings since many outcomes present modest effects and wide CIs, and statistical effects in many analyses are sensitive to the addition/removal of individual trials. Future work should focus on rigorously designed, well-reported trials that make comparisons involving both exercise and diet. SYSTEMATIC REVIEW REGISTRATION: This systematic review was prospectively registered on the Prospero International Prospective Register of Systematic Reviews ( CRD42017062576 ).


Subject(s)
Diet , Exercise Therapy/methods , Polycystic Ovary Syndrome/therapy , Adult , Combined Modality Therapy , Female , Humans , Randomized Controlled Trials as Topic , Young Adult
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3866-3869, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441207

ABSTRACT

Despite its import as a diagnostic tool, patients with active implantable medical devices (AIMDs) are generally denied access to magnetic resonance imaging (MRI). The complexity of MRI environments stems from a multiplicity of fields and numerous scan parameters. In order to perform a risk assessment for RF-induced malfunction, manufacturers perform electromagnetic simulations using computational human models (CHMs) to calculate RF induced energy at the AIMD ports. This work explores the impact of the CHMs on the calculation of RF-induced voltages at the RF antenna port for cardiovascular implantable electronic devices (CIEDs).


Subject(s)
Magnetic Resonance Imaging , Prostheses and Implants , Electromagnetic Fields , Electromagnetic Phenomena , Electronics , Humans , Risk Assessment
19.
Am J Surg Pathol ; 42(11): 1562-1570, 2018 11.
Article in English | MEDLINE | ID: mdl-30179902

ABSTRACT

We describe 2 cases of a distinct sarcoma characterized by a novel MEIS1-NCOA2 gene fusion. This gene fusion was identified in the renal neoplasms of 2 adults (21-y-old male, 72-y-old female). Histologically, the resected renal neoplasms had a distinctively nodular appearance, and while one renal neoplasm was predominantly cystic, the other demonstrated solid architecture, invasion of perirenal fat, and renal sinus vasculature invasion. The neoplasms were characterized predominantly by monomorphic plump spindle cells arranged in vague fascicles with a whorling pattern; however, a more primitive small round cell component was also noted. Both neoplasms were mitotically active and one case showed necrosis. The neoplasms did not have a distinctive immunohistochemical profile, though both labeled for TLE1. The morphologic features are distinct from other sarcomas associated with NCOA2 gene fusions, including mesenchymal chondrosarcoma, congenital/infantile spindle cell rhabdomyosarcoma, and soft tissue angiofibroma. While we have minimal clinical follow-up, the aggressive histologic features of these neoplasms indicate malignant potential, thus warranting classification as a novel subtype of sarcoma.


Subject(s)
Biomarkers, Tumor/genetics , Gene Fusion , Kidney Neoplasms/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Nuclear Receptor Coactivator 2/genetics , Sarcoma/genetics , Aged , Biomarkers, Tumor/analysis , Biopsy , Co-Repressor Proteins , Female , Genetic Predisposition to Disease , Humans , In Situ Hybridization, Fluorescence , Kidney Neoplasms/chemistry , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Male , Nephrectomy , Phenotype , Repressor Proteins/analysis , Sarcoma/chemistry , Sarcoma/pathology , Sarcoma/surgery , Sequence Analysis, RNA , Young Adult
20.
Oncol Lett ; 16(1): 713-720, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29963136

ABSTRACT

Aquaporins are membrane proteins that regulate cellular water flow. Recently, aquaporins have been proposed as mediators of cancer cell biology. A subset of aquaporins, referred to as aquaglyceroporins are known to facilitate the transport of glycerol. The present study describes the effect of gene knockdown of the aquaglyceroporin AQP3 on MDA-MB-231 breast cancer cell proliferation, migration, invasion, adherence and response to the chemotherapeutic agent 5-fluorouracil. shRNA mediated AQP3 gene knockdown induced a 28% reduction in cellular proliferation (P<0.01), a 39% decrease in migration (P<0.0001), a 24% reduction in invasion (P<0.05) and a 25% increase in cell death at 100 µM 5-FU (P<0.01). Analysis of cell permeability to water and glycerol revealed that MDA-MB-231 cells with knocked down AQP3 demonstrated a modest decrease in water permeability (17%; P<0.05) but a more marked decrease in glycerol permeability (77%; P<0.001). These results suggest that AQP3 has a role in multiple aspects of breast cancer cell pathophysiology and therefore represents a novel target for therapeutic intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...